Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.695
Filtrar
1.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
2.
Front Immunol ; 15: 1368040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562925

RESUMO

Background: Excessive inflammation, hemolysis, and accumulation of labile heme play an essential role in the pathophysiology of multi-organ dysfunction syndrome (MODS) in sepsis. Alpha1-antitrypsin (AAT), an acute phase protein with heme binding capacity, is one of the essential modulators of host responses to inflammation. In this study, we evaluate the putative protective effect of AAT against MODS and mortality in a mouse model of polymicrobial abdominal sepsis. Methods: Polymicrobial abdominal sepsis was induced in C57BL/6N mice by cecal ligation and puncture (CLP). Immediately after CLP surgery, mice were treated intraperitoneally with three different forms of human AAT-plasma-derived native (nAAT), oxidized nAAT (oxAAT), or recombinant AAT (recAAT)-or were injected with vehicle. Sham-operated mice served as controls. Mouse survival, bacterial load, kidney and liver function, immune cell profiles, cytokines/chemokines, and free (labile) heme levels were assessed. In parallel, in vitro experiments were carried out with resident peritoneal macrophages (MPMΦ) and mouse peritoneal mesothelial cells (MPMC). Results: All AAT preparations used reduced mortality in septic mice. Treatment with AAT significantly reduced plasma lactate dehydrogenase and s-creatinine levels, vascular leakage, and systemic inflammation. Specifically, AAT reduced intraperitoneal accumulation of free heme, production of cytokines/chemokines, and neutrophil infiltration into the peritoneal cavity compared to septic mice not treated with AAT. In vitro experiments performed using MPMC and primary MPMΦ confirmed that AAT not only significantly decreases lipopolysaccharide (LPS)-induced pro-inflammatory cell activation but also prevents the enhancement of cellular responses to LPS by free heme. In addition, AAT inhibits cell death caused by free heme in vitro. Conclusion: Data from the septic CLP mouse model suggest that intraperitoneal AAT treatment alone is sufficient to improve sepsis-associated organ dysfunctions, preserve endothelial barrier function, and reduce mortality, likely by preventing hyper-inflammatory responses and by neutralizing free heme.


Assuntos
Doenças Transmissíveis , Sepse , Humanos , Camundongos , Animais , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Quimiocinas , Fatores Imunológicos
3.
Int J Biol Sci ; 20(6): 2261-2263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617531

RESUMO

Chemokines are very important for carcinogenesis and the development of a malignant phenotype. Lactate is a small molecule produced during glycolysis; recently it has emerged as an immunomodulator that could impact tumor cell behavior. In this paper we explore the interplay between chemokines, glycolysis, and lactate in cancer progression, and propose the existence of a pro-tumoral lactate-chemokine-glycolysis loop driven by high glucose levels.


Assuntos
Adjuvantes Imunológicos , Ácido Láctico , Humanos , Carcinogênese , Quimiocinas , Glicólise
4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1579-1586, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621942

RESUMO

This study aims to investigate the effects of Gualou Xiebai Banxia Decoction(GXBD) on type 2 diabetes mellitus(T2DM) combined with acute myocardial infarction(AMI) in rats via chemerin/chemokine-like receptor 1(CMKLR1)/peroxisome proliferator-activated receptor α(PPARα) signaling pathway, and to explore the mechanism of GXBD in alleviating glucose and lipid metabolism disorders. The SD rats were randomized into control, model, positive control, and low-and high-dose GXBD groups. The rat model of T2DM was established by administration with high-fat emulsion(HFE) by gavage and intraperitoneal injection with streptozotocin, and then coronary artery ligation was performed to induce AMI. The control and model groups were administrated with the equal volume of normal saline, and other groups were administrated with corresponding drugs by gavage. Changes in relevant metabolic indicators were assessed by ELISA and biochemical assays, and the protein levels of chemerin, CMKLR1, and PPARα in the liver, abdominal fat, and heart were determined by Western blot. The results showed that GXBD alleviated the myocardial damage and reduced the levels of blood lipids, myocardial enzymes, and inflammatory cytokines, while it did not lead to significant changes in blood glucose. Compared with the model group, GXBD down-regulated the expression of chemerin in peripheral blood and up-regulated the expression of cyclic adenosine monophosphate(cAMP) and protein kinase A(PKA) in the liver. After treatment with GXBD, the protein levels of chemerin and CMKLR1 in the liver, abdominal fat, and heart were down-regulated, while the protein levels of PPARα in the liver and abdominal fat were up-regulated. In conclusion, GXBD significantly ameliorated the disorders of glycolipid metabolism in the T2DM-AMI model by regulating the chemerin/CMKLR1/PPARα signaling pathway to exert a protective effect on the damaged myocardium. This study provides a theoretical basis for further clinical study of GXBD against T2DM-AMI and is a manifestation of TCM treatment of phlegm and turbidity causing obstruction at the protein level.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Ratos , Animais , PPAR alfa/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ratos Sprague-Dawley , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Quimiocinas
5.
Sci Rep ; 14(1): 7672, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561377

RESUMO

Lipopolysaccharide (LPS) is known to elicit a robust immune response. This study aimed to investigate the impact of LPS on the transcriptome of human nasal epithelial cells (HNEpC). HNEpC were cultured and stimulated with LPS (1 µg/mL) or an equivalent amount of normal culture medium. Subsequently, total RNA was extracted, purified, and sequenced using next-generation RNA sequencing technology. Differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. A protein-protein interaction (PPI) network of DEGs was constructed, followed by Ingenuity Pathway Analysis (IPA) to identify molecular pathways influenced by LPS exposure on HNEpC. Validation of key genes was performed using quantitative real-time PCR (qRT-PCR). A total of 97 DEGs, comprising 48 up-regulated genes and 49 down-regulated genes, were identified. Results from functional enrichment analysis, PPI, and IPA indicated that DEGs were predominantly enriched in chemokine-related signaling pathways. Subsequent qRT-PCR validation demonstrated significant upregulation of key genes in these pathways in LPS-treated HNEpC compared to control cells. In conclusion, LPS intervention profoundly altered the transcriptome of HNEpC, potentially exacerbating inflammatory responses through the activation of chemokine-related signaling pathways.


Assuntos
Perfilação da Expressão Gênica , Lipopolissacarídeos , Humanos , Perfilação da Expressão Gênica/métodos , Lipopolissacarídeos/farmacologia , Transcriptoma , Transdução de Sinais/genética , Células Epiteliais , Quimiocinas/genética , Biologia Computacional/métodos
6.
Arthritis Res Ther ; 26(1): 85, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610060

RESUMO

INTRODUCTION: Immunoglobulin A vasculitis (IgAV) in adults has a variable disease course, with patients often developing gastrointestinal and renal involvement and thus contributing to higher mortality. Due to understudied molecular mechanisms in IgAV currently used biomarkers for IgAV visceral involvement are largely lacking. Our aim was to search for potential serum biomarkers based on the skin transcriptomic signature. METHODS: RNA sequencing analysis was conducted on skin biopsies collected from 6 treatment-naïve patients (3 skin only and 3 renal involvement) and 3 healthy controls (HC) to get insight into deregulated processes at the transcriptomic level. 15 analytes were selected and measured based on the transcriptome analysis (adiponectin, lipopolysaccharide binding protein (LBP), matrix metalloproteinase-1 (MMP1), C-C motif chemokine ligand (CCL) 19, kallikrein-5, CCL3, leptin, C-X-C motif chemokine ligand (CXCL) 5, osteopontin, interleukin (IL)-15, CXCL10, angiopoietin-like 4 (ANGPTL4), SERPIN A12/vaspin, IL-18 and fatty acid-binding protein 4 (FABP4)) in sera of 59 IgAV and 22 HC. Machine learning was used to assess the ability of the analytes to predict IgAV and its organ involvement. RESULTS: Based on the gene expression levels in the skin, we were able to differentiate between IgAV patients and HC using principal component analysis (PCA) and a sample-to-sample distance matrix. Differential expression analysis revealed 49 differentially expressed genes (DEGs) in all IgAV patient's vs. HC. Patients with renal involvement had more DEGs than patients with skin involvement only (507 vs. 46 DEGs) as compared to HC, suggesting different skin signatures. Major dysregulated processes in patients with renal involvement were lipid metabolism, acute inflammatory response, and extracellular matrix (ECM)-related processes. 11 of 15 analytes selected based on affected processes in IgAV skin (osteopontin, LBP, ANGPTL4, IL-15, FABP4, CCL19, kallikrein-5, CCL3, leptin, IL-18 and MMP1) were significantly higher (p-adj < 0.05) in IgAV serum as compared to HC. Prediction models utilizing measured analytes showed high potential for predicting adult IgAV. CONCLUSION: Skin transcriptomic data revealed deregulations in lipid metabolism and acute inflammatory response, reflected also in serum analyte measurements. LBP, among others, could serve as a potential biomarker of renal complications, while adiponectin and CXCL10 could indicate gastrointestinal involvement.


Assuntos
Vasculite por IgA , Adulto , Humanos , Vasculite por IgA/diagnóstico , Vasculite por IgA/genética , Interleucina-18 , Leptina , Metaloproteinase 1 da Matriz , Osteopontina , Adiponectina , Ligantes , Inflamação , Calicreínas , Quimiocinas
7.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611703

RESUMO

In cutaneous wound healing, an overproduction of inflammatory chemokines and bacterial infections impedes the process. Hydrogels can maintain a physiologically moist microenvironment, absorb chemokines, prevent bacterial infection, inhibit bacterial reproduction, and facilitate wound healing at a wound site. The development of hydrogels provides a novel treatment strategy for the entire wound repair process. Here, a series of Fructus Ligustri Lucidi polysaccharide extracts loaded with polyvinyl alcohol (PVA) and pectin hydrogels were successfully fabricated through the freeze-thaw method. A hydrogel containing a 1% mixing weight ratio of FLL-E (named PVA-P-FLL-E1) demonstrated excellent physicochemical properties such as swellability, water retention, degradability, porosity, 00drug release, transparency, and adhesive strength. Notably, this hydrogel exhibited minimal cytotoxicity. Moreover, the crosslinked hydrogel, PVA-P-FLL-E1, displayed multifunctional attributes, including significant antibacterial properties, earlier re-epithelialization, production of few inflammatory cells, the formation of collagen fibers, deposition of collagen I, and faster remodeling of the ECM. Consequently, the PVA-P-FLL-E1 hydrogel stands out as a promising wound dressing due to its superior formulation and enhanced healing effects in wound care.


Assuntos
Ligustrum , Pectinas , Pectinas/farmacologia , Álcool de Polivinil , Polissacarídeos/farmacologia , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Colágeno Tipo I , Quimiocinas , Hidrogéis
8.
Sci Rep ; 14(1): 8379, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600116

RESUMO

Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.


Assuntos
Lacticaseibacillus rhamnosus , Monócitos , Humanos , Monócitos/metabolismo , Secretoma , Lipopolissacarídeos , Citocinas/metabolismo , Quimiocinas/metabolismo , Imunidade
9.
BMC Cancer ; 24(1): 474, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622609

RESUMO

BACKGROUND AND PURPOSE: In recent years, there has been extensive research on the role of exercise as an adjunctive therapy for cancer. However, the potential mechanisms underlying the anti-tumor therapy of exercise in lung cancer remain to be fully elucidated. As such, our study aims to confirm whether exercise-induced elevation of epinephrine can accelerate CD8+ T cell recruitment through modulation of chemokines and thus ultimately inhibit tumor progression. METHOD: C57BL/6 mice were subcutaneously inoculated with Lewis lung cancer cells (LLCs) to establish a subcutaneous tumor model. The tumor mice were randomly divided into different groups to performed a moderate-intensity exercise program on a treadmill for 5 consecutive days a week, 45 min a day. The blood samples and tumor tissues were collected after exercise for IHC, RT-qPCR, ELISA and Western blot. In addition, another group of mice received daily epinephrine treatment for two weeks (0.05 mg/mL, 200 µL i.p.) (EPI, n = 8) to replicate the effects of exercise on tumors in vivo. Lewis lung cancer cells were treated with different concentrations of epinephrine (0, 5, 10, 20 µM) to detect the effect of epinephrine on chemokine levels via ELISA and RT-qPCR. RESULTS: This study reveals that both pre- and post-cancer exercise effectively impede the tumor progression. Exercise led to an increase in EPI levels and the infiltration of CD8+ T cell into the lung tumor. Exercise-induced elevation of EPI is involved in the regulation of Ccl5 and Cxcl10 levels further leading to enhanced CD8+ T cell infiltration and ultimately inhibiting tumor progression. CONCLUSION: Exercise training enhance the anti-tumor immunity of lung cancer individuals. These findings will provide valuable insights for the future application of exercise therapy in clinical practice.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos , Quimiocinas , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Cell Commun Signal ; 22(1): 229, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622714

RESUMO

The ß-catenin dependent canonical Wnt signaling pathway plays a crucial role in maintaining normal homeostasis. However, when dysregulated, Wnt signaling is closely associated with various pathological conditions, including inflammation and different types of cancer.Here, we show a new connection between the leukocyte inflammatory response and the Wnt signaling pathway. Specifically, we demonstrate that circulating human primary monocytes express distinct Wnt signaling components and are susceptible to stimulation by the classical Wnt ligand-Wnt-3a. Although this stimulation increased the levels of ß-catenin protein, the expression of the classical Wnt-target genes was not affected. Intriguingly, treating circulating human monocytes with Wnt-3a induces the secretion of cytokines and chemokines, enhancing monocyte migration. Mechanistically, the enhanced monocyte migration in response to Wnt stimuli is mediated through CCL2, a strong monocyte-chemoattractant.To further explore the physiological relevance of these findings, we conducted ex-vivo experiments using blood samples of patients with rheumatic joint diseases (RJD) - conditions where monocytes are known to be dysfunctional. Wnt-3a generated a unique cytokine expression profile, which was significantly distinct from that observed in monocytes obtained from healthy donors.Thus, our results provide the first evidence that Wnt-3a may serve as a potent stimulator of monocyte-driven immune processes. These findings contribute to our understanding of inflammatory diseases and, more importantly, shed light on the role of a core signaling pathway in the circulation.


Assuntos
Monócitos , Via de Sinalização Wnt , Humanos , Monócitos/metabolismo , Proteína Wnt3A/genética , Movimento Celular , Quimiocinas , beta Catenina/metabolismo
11.
ACS Chem Neurosci ; 15(8): 1712-1727, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581382

RESUMO

Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.


Assuntos
Encefalite Japonesa , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Doenças Neuroinflamatórias , Microbioma Gastrointestinal/fisiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/microbiologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/imunologia , Encefalite Japonesa/microbiologia , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Vírus da Encefalite Japonesa (Subgrupo)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Subgrupo)/imunologia , Vírus da Encefalite Japonesa (Subgrupo)/patogenicidade , Análise de Sobrevida , Quimiocinas/imunologia , Quimiocinas/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/prevenção & controle , Humanos , Feminino , Animais , Camundongos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/virologia , Carga Viral/efeitos dos fármacos , Fatores de Tempo
12.
PLoS One ; 19(4): e0298418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625857

RESUMO

The chemokines of the immune system act as first responders by operating as chemoattractants, directing immune cells to specific locations of inflamed tissues. This promiscuous network is comprised of 50 ligands and 18 receptors where the ligands may interact with the receptors in various oligomeric states i.e., monomers, homodimers, and heterodimers. Chemokine receptors are G-protein coupled receptors (GPCRs) present in the membrane of immune cells. The migration of immune cells occurs in response to a concentration gradient of the ligands. Chemotaxis of neutrophils is directed by CXC-ligand (CXCL) activation of the membrane bound CXC chemokine receptor 2 (CXCR2). CXCR2 plays an important role in human health and is linked to disorders such as autoimmune disorders, inflammation, and cancer. Yet, despite their important role, little is known about the biophysical characteristics controlling ligand:ligand and ligand:receptor interaction essential for biological activity. In this work, we study the homodimers of three of the CXCR2 cognate ligands, CXCL1, CXCL5, and CXCL8. The ligands share high structural integrity but a low sequence identity. We show that the sequence diversity has evolved different binding affinities and stabilities for the CXC-ligands resulting in diverse agonist/antagonist behavior. Furthermore, CXC-ligands fold through a three-state mechanism, populating a folded monomeric state before associating into an active dimer.


Assuntos
Interleucina-8 , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/genética , Ligantes , Interleucina-8/metabolismo , Quimiocinas/metabolismo , Quimiocina CXCL1 , Fatores Quimiotáticos/metabolismo , Quimiotaxia
13.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630846

RESUMO

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


Assuntos
COVID-19 , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , SARS-CoV-2 , Estudos Prospectivos , Multiômica , Quimiocinas
14.
Ulus Travma Acil Cerrahi Derg ; 30(4): 229-235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634842

RESUMO

BACKGROUND: The immune response secondary to inflammation that develops in acute pancreatitis plays an important role in the clinical course of the disease. This study aims to evaluate the changes in various cytokines and chemokines according to the severity of pancreatitis. METHODS: Twenty-one female Wistar albino rats were divided into three equal groups. The control group received no intervention. Intraperitoneal cerulein was administered to the other groups once per hour for five hours at doses of 50 µg/kg and 80 µg/kg for the mild and severe pancreatitis groups, respectively. The development of pancreatitis and its severity level were confirmed by histological evaluation after euthanization. Blood samples were taken from all rats to measure levels of Interleukin-10 (IL-10), Interferon gamma (IFN-γ), C-X-C Motif Chemokine Ligand 1 (CXCL-1), Monocyte Chemoattractant Protein-1 (MCP-1), Tumor Necrosis Factor alpha (TNF-α), Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), IL-18, IL-12p70, IL-1ß, IL-17A, IL-33, IL-1α, and IL-6. Additionally, the Schoenberg inflammation scores of pancreatic tissues were evaluated. RESULTS: The acute pancreatitis model was successfully induced in all cases within the study groups, according to histopathological examination. It was found that the levels of CXCL-1, MCP-1, and IL-6 were statistically significantly higher in rats with pancreatitis, with these parameters being elevated in the group with severe pancreatitis. In correlation analyses, MCP-1 and IL-6 showed a moderate correlation with the severity of pancreatitis. CONCLUSION: CXCL-1, MCP-1, and IL-6 exhibit predictive characteristics for the occurrence and clinical course of pancreatitis. Our results highlight the production and working pathways of these cytokines as potential targets for therapeutic intervention.


Assuntos
Citocinas , Pancreatite , Feminino , Animais , Ratos , Ratos Wistar , Doença Aguda , Interleucina-6 , Quimiocinas , Inflamação , Progressão da Doença
15.
Proc Natl Acad Sci U S A ; 121(16): e2314426121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574017

RESUMO

Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Animais , Camundongos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Aflatoxina B1/toxicidade , Ligantes , Linfoma de Burkitt/metabolismo , Quimiocinas , Carcinogênese
16.
Physiol Rep ; 12(8): e16008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38631890

RESUMO

We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-ß-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.


Assuntos
Asma , Ozônio , Pneumonia , Animais , Camundongos , Masculino , Ozônio/efeitos adversos , Adiponectina/farmacologia , Pulmão , Pneumonia/induzido quimicamente , Líquido da Lavagem Broncoalveolar , Receptores Acoplados a Proteínas G , Asma/genética , Quimiocinas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia
17.
PLoS One ; 19(4): e0293680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652715

RESUMO

Universal and early recognition of pathogens occurs through recognition of evolutionarily conserved pathogen associated molecular patterns (PAMPs) by innate immune receptors and the consequent secretion of cytokines and chemokines. The intrinsic complexity of innate immune signaling and associated signal transduction challenges our ability to obtain physiologically relevant, reproducible and accurate data from experimental systems. One of the reasons for the discrepancy in observed data is the choice of measurement strategy. Immune signaling is regulated by the interplay between pathogen-derived molecules with host cells resulting in cellular expression changes. However, these cellular processes are often studied by the independent assessment of either the transcriptome or the proteome. Correlation between transcription and protein analysis is lacking in a variety of studies. In order to methodically evaluate the correlation between transcription and protein expression profiles associated with innate immune signaling, we measured cytokine and chemokine levels following exposure of human cells to the PAMP lipopolysaccharide (LPS) from the Gram-negative pathogen Pseudomonas aeruginosa. Expression of 84 messenger RNA (mRNA) transcripts and 69 proteins, including 35 overlapping targets, were measured in human lung epithelial cells. We evaluated 50 biological replicates to determine reproducibility of outcomes. Following pairwise normalization, 16 mRNA transcripts and 6 proteins were significantly upregulated following LPS exposure, while only five (CCL2, CSF3, CXCL5, CXCL8/IL8, and IL6) were upregulated in both transcriptomic and proteomic analysis. This lack of correlation between transcription and protein expression data may contribute to the discrepancy in the immune profiles reported in various studies. The use of multiomic assessments to achieve a systems-level understanding of immune signaling processes can result in the identification of host biomarker profiles for a variety of infectious diseases and facilitate countermeasure design and development.


Assuntos
Biomarcadores , Células Epiteliais , Lipopolissacarídeos , Pseudomonas aeruginosa , Humanos , Lipopolissacarídeos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Pseudomonas aeruginosa/imunologia , Biomarcadores/metabolismo , Pulmão/metabolismo , Pulmão/imunologia , Transcriptoma , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Quimiocinas/metabolismo , Quimiocinas/genética
18.
PeerJ ; 12: e17170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590701

RESUMO

Introduction: Involvement of a chemokine known as C-X-C motif chemokine ligand 10 or CXCL10 in the immunopathology of leprosy has emerged as a possible immunological marker for leprosy diagnosis and needed to be investigate further. The purpose of this systematic review is to assess CXCL10's potential utility as a leprosy diagnostic tool and evaluation of therapy. Methods: This systematic review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. A thorough search was carried out to find relevant studies only in English and limited in humans published up until September 2023 using PubMed, Scopus, Science Direct, and Wiley Online Library database with keywords based on medical subject headings (MeSH) and no exclusion criteria. The Newcastle-Ottawa Scale (NOS) was utilized for quality assessment, while the Risk of Bias Assessment tool for Non-randomized Studies (RoBANS) was utilized for assessing the risk of bias. Additionally, a narrative synthesis was conducted to provide a comprehensive review of the results. Results: We collected a total of 115 studies using defined keywords and 82 studies were eliminated after titles and abstracts were screened. We assessed the eligibility of the remaining 26 reports in full text and excluded four studies due to inappropriate study design and two studies with incomplete outcome data. There were twenty included studies in total with total of 2.525 samples. The included studies received NOS quality evaluation scores ranging from 6 to 8. The majority of items in the risk bias assessment, using RoBANS, across all included studies yielded low scores. However, certain items related to the selection of participants and confounding variables showed variations. Most of studies indicate that CXCL10 may be a helpful immunological marker for leprosy diagnosis, particularly in leprosy reactions as stated in seven studies. The results are better when paired with other immunological markers. Its effectiveness in field-friendly diagnostic tools makes it one of the potential biomarkers used in diagnosing leprosy patients. Additionally, CXCL10 may be utilized to assess the efficacy of multidrug therapy (MDT) in leprosy patients as stated in three studies. Conclusion: The results presented in this systematic review supports the importance of CXCL10 in leprosy diagnosis, particularly in leprosy responses and in tracking the efficacy of MDT therapy. Using CXCL10 in clinical settings might help with leprosy early diagnosis. Yet the findings are heterogenous, thus more investigation is required to determine the roles of CXCL10 in leprosy while taking into account for additional confounding variables.


Assuntos
Quimiocinas , Hansenostáticos , Humanos , Quimioterapia Combinada , Quimiocina CXCL10
19.
J Cell Mol Med ; 28(7): e18193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506205

RESUMO

Colorectal cancer (CRC) liver metastasis, albeit a stage-IV disease, is completely curable by surgical resection in selected patients. In addressing the molecular basics of this phenomenon, differentially expressed genes at primary and liver metastatic sites were screened by RNA sequencing with the use of paraffin-embedded surgical specimens. Chemokine C-C motif ligand 1 (CCL1), a chemotactic factor for a ligand of the chemokine C-C motif receptor 8 (CCR8), was isolated as one of the differentially expressed genes. Histological analysis revealed that the number of CCL1-positive cells, mainly tumour associated macrophages (TAMs) located in the stroma of CRC, decreased significantly at liver metastatic sites, while the expression level of CCR8 on CRC remained unchanged. To explore the biological significance of the CCL1-CCR8 axis in CRC, CCR8-positive CRC cell line Colo320DM was used to assess the effect of the CCL1-CCR8 axis on major signalling pathways, epithelial mesenchymal transition induction and cell motility. Upon stimulation of recombinant CCL1 (rCCL1), phosphorylation of AKT was observed in Colo320DM cells; on the other hand, the corresponding significant increase in MMP-2 levels demonstrated by RT-qPCR was nullified by siRNA (siCCR8). In the scratch test, rCCL1 treatment significantly increased the motility of Colo320DM cells, which was similarly nullified by siCCR8. Thus, the activation of the CCL1-CCR8 axis is a positive regulator of CRC tumour progression. Reduced CCL1 expression of TAMs at liver metastatic sites may partly explain the unique slow tumour progression of CRC, thus providing for a grace period for radical resection of metastatic lesions.


Assuntos
Neoplasias Colorretais , Fígado , Humanos , Quimiocina CCL1 , Ligantes , Fígado/metabolismo , Quimiocinas , Receptores de Quimiocinas/metabolismo , Neoplasias Colorretais/genética
20.
Inhal Toxicol ; 36(2): 106-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38477125

RESUMO

OBJECTIVE: Occupational exposure to respirable crystalline silica (cSiO2) has been linked to lupus development. Previous studies in young lupus-prone mice revealed that intranasal cSiO2 exposure triggered autoimmunity, preventable with docosahexaenoic acid (DHA). This study explores cSiO2 and DHA effects in mature lupus-prone adult mice, more representative of cSiO2-exposed worker age. METHODS: Female NZBWF1 mice (14-week old) were fed control (CON) or DHA-supplemented diets. After two weeks, mice were intranasally instilled saline (VEH) or 1 mg cSiO2 weekly for four weeks. Cohorts were then analyzed 1- and 5-weeks postinstillation for lung inflammation, cell counts, chemokines, histopathology, B- and T-cell infiltration, autoantibodies, and gene signatures, with results correlated to autoimmune glomerulonephritis onset. RESULTS: VEH/CON mice showed no pathology. cSiO2/CON mice displayed significant ectopic lymphoid tissue formation in lungs at 1 week, increasing by 5 weeks. cSiO2/CON lungs exhibited elevated cellularity, chemokines, CD3+ T-cells, CD45R + B-cells, IgG + plasma cells, gene expression, IgG autoantibodies, and glomerular hypertrophy. DHA supplementation mitigated all these effects. DISCUSSION: The mature adult NZBWF1 mouse used here represents a life-stage coincident with immunological tolerance breach and one that more appropriately represents the age (20-30 yr) of cSiO2-exposed workers. cSiO2-induced robust pulmonary inflammation, autoantibody responses, and glomerulonephritis in mature adult mice, surpassing effects observed previously in young adults. DHA at a human-equivalent dosage effectively countered cSiO2-induced inflammation/autoimmunity in mature mice, mirroring protective effects in young mice. CONCLUSION: These results highlight life-stage significance in this preclinical lupus model and underscore omega-3 fatty acids' therapeutic potential against toxicant-triggered autoimmune responses.


Assuntos
Ácidos Graxos Ômega-3 , Glomerulonefrite , Pneumonia , Feminino , Camundongos , Humanos , Animais , Ácidos Graxos Ômega-3/toxicidade , Autoimunidade , Dióxido de Silício/toxicidade , Pneumonia/induzido quimicamente , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Ácidos Docosa-Hexaenoicos/toxicidade , Quimiocinas/toxicidade , Autoanticorpos , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...